Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
PLoS Pathog ; 19(1): e1011085, 2023 01.
Artigo em Inglês | MEDLINE | ID: covidwho-2224483

RESUMO

Neutralizing antibodies (nAbs) are important assets to fight COVID-19, but most existing nAbs lose the activities against Omicron subvariants. Here, we report a human monoclonal antibody (Ab08) isolated from a convalescent patient infected with the prototype strain (Wuhan-Hu-1). Ab08 binds to the receptor-binding domain (RBD) with pico-molar affinity (230 pM), effectively neutralizes SARS-CoV-2 and variants of concern (VOCs) including Alpha, Beta, Gamma, Mu, Omicron BA.1 and BA.2, and to a lesser extent for Delta and Omicron BA.4/BA.5 which bear the L452R mutation. Of medical importance, Ab08 shows therapeutic efficacy in SARS-CoV-2-infected hACE2 mice. X-ray crystallography of the Ab08-RBD complex reveals an antibody footprint largely in the ß-strand core and away from the ACE2-binding motif. Negative staining electron-microscopy suggests a neutralizing mechanism through which Ab08 destructs the Spike trimer. Together, our work identifies a nAb with therapeutic potential for COVID-19.


Assuntos
Anticorpos Monoclonais , COVID-19 , SARS-CoV-2 , Animais , Humanos , Camundongos , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/uso terapêutico , Glicoproteína da Espícula de Coronavírus/genética
2.
J Adolesc ; 94(8): 1081-1095, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: covidwho-1990459

RESUMO

INTRODUCTION: Given that coronavirus disease 2019 (COVID-19) has largely influenced adolescents' physical and mental health around the globe, it is important to identify protective factors that may promote adolescents' positive adjustment during the pandemic. This study aimed to examine the role of parental attachment and COVID-19 communication in adolescents' health behavior and mental health during COVID-19. METHODS: A total of 442 Chinese parent-adolescent dyads (mean age of adolescents = 13.35 years; 50% girls) completed two-wave longitudinal surveys over the span of 2 months during the pandemic (Wave 1: July 2020; Wave 2: September 2020). At each wave, adolescents reported on their COVID-19-related health behavior, general health behavior, depressive symptoms, and anxiety symptoms. At Wave 1, parent-adolescent attachment security and COVID-19 communication were also assessed. RESULTS: Adolescents' attachment security to parents was associated with their increased COVID-19-related and general health behavior as well as decreased depression and anxiety over 2 months during COVID-19. Moreover, more frequent parent-adolescent COVID-19 communication was associated with adolescents' increased COVID-19-related and general health behavior over time. Notably, attachment security's and COVID-19 communication's associations with health behavior largely remained the same after taking into account both factors simultaneously. In addition, results from exploratory analyses suggest that more frequent COVID-19 communication mediates the link between attachment security and increased health behavior. CONCLUSIONS: These findings highlight the importance of promoting attachment security and COVID-19 communication between parents and adolescents during the pandemic, which may play a positive role in adolescents' health behavior and mental health.

3.
Nat Microbiol ; 7(7): 1063-1074, 2022 07.
Artigo em Inglês | MEDLINE | ID: covidwho-1908191

RESUMO

Frequent outbreaks of coronaviruses underscore the need for antivirals and vaccines that can counter a broad range of coronavirus types. We isolated a human antibody named 76E1 from a COVID-19 convalescent patient, and report that it has broad-range neutralizing activity against multiple α- and ß-coronaviruses, including the SARS-CoV-2 variants. 76E1 also binds its epitope in peptides from γ- and δ-coronaviruses. 76E1 cross-protects against SARS-CoV-2 and HCoV-OC43 infection in both prophylactic and therapeutic murine animal models. Structural and functional studies revealed that 76E1 targets a unique epitope within the spike protein that comprises the highly conserved S2' site and the fusion peptide. The epitope that 76E1 binds is partially buried in the structure of the SARS-CoV-2 spike trimer in the prefusion state, but is exposed when the spike protein binds to ACE2. This observation suggests that 76E1 binds to the epitope at an intermediate state of the spike trimer during the transition from the prefusion to the postfusion state, thereby blocking membrane fusion and viral entry. We hope that the identification of this crucial epitope, which can be recognized by 76E1, will guide epitope-based design of next-generation pan-coronavirus vaccines and antivirals.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Antivirais , Epitopos , Humanos , Imunoglobulinas , Camundongos , Glicoproteína da Espícula de Coronavírus/metabolismo
5.
Cell ; 185(8): 1389-1401.e18, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: covidwho-1788017

RESUMO

The effectiveness of SARS-CoV-2 vaccines and therapeutic antibodies have been limited by the continuous emergence of viral variants and by the restricted diffusion of antibodies from circulation into the sites of respiratory virus infection. Here, we report the identification of two highly conserved regions on the Omicron variant receptor-binding domain recognized by broadly neutralizing antibodies. Furthermore, we generated a bispecific single-domain antibody that was able to simultaneously and synergistically bind these two regions on a single Omicron variant receptor-binding domain as revealed by cryo-EM structures. We demonstrated that this bispecific antibody can be effectively delivered to lung via inhalation administration and exhibits exquisite neutralization breadth and therapeutic efficacy in mouse models of SARS-CoV-2 infections. Importantly, this study also deciphered an uncommon and highly conserved cryptic epitope within the spike trimeric interface that may have implications for the design of broadly protective SARS-CoV-2 vaccines and therapeutics.


Assuntos
Vacinas contra COVID-19 , Anticorpos de Domínio Único , Administração por Inalação , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , Vacinas contra COVID-19/administração & dosagem , Modelos Animais de Doenças , Humanos , Camundongos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química
6.
J Adolesc Health ; 70(5): 729-735, 2022 05.
Artigo em Inglês | MEDLINE | ID: covidwho-1676791

RESUMO

PURPOSE: Preventive health behavior during COVID-19 protects not only oneself but also the welfare of others. However, little attention has been paid to prosocial motivation in adolescents, who are often viewed as selfish and egocentric. Therefore, the current study aimed to explore the role of empathy in adolescents' preventive health behavior using longitudinal data. METHODS: A total of 442 Chinese adolescents (mean age of youth = 13.35 years; 49.5% girls and 50.5% boys) completed two-wave longitudinal surveys over the span of two months during the pandemic (Time 1: July 2020; Time 2: September 2020). At T1, participants reported on their empathic concern, perspective taking, and concern for personal health. At both T1 and T2, participants reported on their preventive health behavior and COVID-related worry. RESULTS: Adolescents who showed greater empathic concern tend to engage in more preventive health behavior over time (p < .01). However, greater empathic concern also predicted adolescents' greater worry about COVID-19 over time (p < .01). In comparison, adolescents' perspective-taking and concern for personal health did not predict their health behavior or worry over time. Notably, the longitudinal effect of empathic concern on preventive health behavior and COVID-related worry remained (ps < .05) after taking into account adolescents' perspective-taking and concern for personal health. CONCLUSIONS: These findings highlight adolescents' prosocial motivation in engaging in preventive health behavior during the pandemic and also point out the potential negative influence of empathic concern on adolescent mental health.


Assuntos
Comportamento do Adolescente , COVID-19 , Adolescente , Comportamento do Adolescente/psicologia , COVID-19/prevenção & controle , China , Empatia , Feminino , Humanos , Masculino , Serviços Preventivos de Saúde
7.
Emerg Microbes Infect ; 11(1): 351-367, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: covidwho-1585238

RESUMO

The emergence of multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern threatens the efficacy of currently approved vaccines and authorized therapeutic monoclonal antibodies (MAbs). It is hence important to continue searching for SARS-CoV-2 broadly neutralizing MAbs and defining their epitopes. Here, we isolate 9 neutralizing mouse MAbs raised against the spike protein of a SARS-CoV-2 prototype strain and evaluate their neutralizing potency towards a panel of variants, including B.1.1.7, B.1.351, B.1.617.1, and B.1.617.2. By using a combination of biochemical, virological, and cryo-EM structural analyses, we identify three types of cross-variant neutralizing MAbs, represented by S5D2, S5G2, and S3H3, respectively, and further define their epitopes. S5D2 binds the top lateral edge of the receptor-binding motif within the receptor-binding domain (RBD) with a binding footprint centred around the loop477-489, and efficiently neutralizes all variant pseudoviruses, but the potency against B.1.617.2 was observed to decrease significantly. S5G2 targets the highly conserved RBD core region and exhibits comparable neutralization towards the variant panel. S3H3 binds a previously unreported epitope located within the evolutionarily stable SD1 region and is able to near equally neutralize all of the variants tested. Our work thus defines three distinct cross-variant neutralizing sites on the SARS-CoV-2 spike protein, providing guidance for design and development of broadly effective vaccines and MAb-based therapies.


Assuntos
COVID-19/virologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , Mapeamento de Epitopos , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Testes de Neutralização , SARS-CoV-2/química , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
8.
Cell Res ; 32(1): 24-37, 2022 01.
Artigo em Inglês | MEDLINE | ID: covidwho-1537308

RESUMO

Host cellular receptors play key roles in the determination of virus tropism and pathogenesis. However, little is known about SARS-CoV-2 host receptors with the exception of ACE2. Furthermore, ACE2 alone cannot explain the multi-organ tropism of SARS-CoV-2 nor the clinical differences between SARS-CoV-2 and SARS-CoV, suggesting the involvement of other receptor(s). Here, we performed genomic receptor profiling to screen 5054 human membrane proteins individually for interaction with the SARS-CoV-2 capsid spike (S) protein. Twelve proteins, including ACE2, ASGR1, and KREMEN1, were identified with diverse S-binding affinities and patterns. ASGR1 or KREMEN1 is sufficient for the entry of SARS-CoV-2 but not SARS-CoV in vitro and in vivo. SARS-CoV-2 utilizes distinct ACE2/ASGR1/KREMEN1 (ASK) receptor combinations to enter different cell types, and the expression of ASK together displays a markedly stronger correlation with virus susceptibility than that of any individual receptor at both the cell and tissue levels. The cocktail of ASK-related neutralizing antibodies provides the most substantial blockage of SARS-CoV-2 infection in human lung organoids when compared to individual antibodies. Our study revealed an interacting host receptome of SARS-CoV-2, and identified ASGR1 and KREMEN1 as alternative functional receptors that play essential roles in ACE2-independent virus entry, providing insight into SARS-CoV-2 tropism and pathogenesis, as well as a community resource and potential therapeutic strategies for further COVID-19 investigations.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Receptor de Asialoglicoproteína , Recursos Comunitários , Humanos , Proteínas de Membrana , Ligação Proteica , Receptores Virais/metabolismo , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus
9.
Signal Transduct Target Ther ; 6(1): 378, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: covidwho-1500450

RESUMO

The current COVID-19 pandemic has heavily burdened the global public health system and may keep simmering for years. The frequent emergence of immune escape variants have spurred the search for prophylactic vaccines and therapeutic antibodies that confer broad protection against SARS-CoV-2 variants. Here we show that the bivalency of an affinity maturated fully human single-domain antibody (n3113.1-Fc) exhibits exquisite neutralizing potency against SARS-CoV-2 pseudovirus, and confers effective prophylactic and therapeutic protection against authentic SARS-CoV-2 in the host cell receptor angiotensin-converting enzyme 2 (ACE2) humanized mice. The crystal structure of n3113 in complex with the receptor-binding domain (RBD) of SARS-CoV-2, combined with the cryo-EM structures of n3113 and spike ecto-domain, reveals that n3113 binds to the side surface of up-state RBD with no competition with ACE2. The binding of n3113 to this novel epitope stabilizes spike in up-state conformations but inhibits SARS-CoV-2 S mediated membrane fusion, expanding our recognition of neutralization by antibodies against SARS-CoV-2. Binding assay and pseudovirus neutralization assay show no evasion of recently prevalent SARS-CoV-2 lineages, including Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), and Delta (B.1.617.2) for n3113.1-Fc with Y58L mutation, demonstrating the potential of n3113.1-Fc (Y58L) as a promising candidate for clinical development to treat COVID-19.


Assuntos
Enzima de Conversão de Angiotensina 2/química , Anticorpos Neutralizantes/química , Anticorpos Antivirais/química , COVID-19 , SARS-CoV-2/química , Anticorpos de Cadeia Única/química , Enzima de Conversão de Angiotensina 2/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/uso terapêutico , Cristalografia por Raios X , Epitopos/química , Epitopos/imunologia , Humanos , Camundongos , SARS-CoV-2/imunologia , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/uso terapêutico
10.
Vaccine ; 39(48): 7001-7011, 2021 11 26.
Artigo em Inglês | MEDLINE | ID: covidwho-1488001

RESUMO

COVID-19 pandemic has severely impacted the public health and social economy worldwide. A safe, effective, and affordable vaccine against SARS-CoV-2 infections/diseases is urgently needed. We have been developing a recombinant vaccine based on a prefusion-stabilized spike trimer of SARS-CoV-2 and formulated with aluminium hydroxide and CpG 7909. The spike protein was expressed in Chinese hamster ovary (CHO) cells, purified, and prepared as a stable formulation with the dual adjuvant. Immunogenicity studies showed that candidate vaccines elicited robust neutralizing antibody responses and substantial CD4+ T cell responses in both mice and non-human primates. And vaccine-induced neutralizing antibodies persisted at high level for at least 6 months. Challenge studies demonstrated that candidate vaccine reduced the viral loads and inflammation in the lungs of SARS-CoV-2 infected golden Syrian hamsters significantly. In addition, the vaccine-induced antibodies showed cross-neutralization activity against B.1.1.7 and B.1.351 variants. These data suggest candidate vaccine is efficacious in preventing SARS-CoV-2 infections and associated pneumonia, thereby justifying ongoing phase I/II clinical studies in China (NCT04982068 and NCT04990544).


Assuntos
Vacinas contra COVID-19 , COVID-19 , Compostos de Alúmen , Hidróxido de Alumínio , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Células CHO , Cricetinae , Cricetulus , Humanos , Camundongos , Pandemias , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética
11.
Sci Bull (Beijing) ; 66(9): 925-936, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: covidwho-1386590

RESUMO

The SARS-CoV-2 infection is spreading rapidly worldwide. Efficacious antiviral therapeutics against SARS-CoV-2 is urgently needed. Here, we discovered that protoporphyrin IX (PpIX) and verteporfin, two Food and Drug Administration (FDA)-approved drugs, completely inhibited the cytopathic effect produced by SARS-CoV-2 infection at 1.25 µmol/L and 0.31 µmol/L, respectively, and their EC50 values of reduction of viral RNA were at nanomolar concentrations. The selectivity indices of PpIX and verteporfin were 952.74 and 368.93, respectively, suggesting a broad margin of safety. Importantly, PpIX and verteporfin prevented SARS-CoV-2 infection in mice adenovirally transduced with human angiotensin-converting enzyme 2 (ACE2). The compounds, sharing a porphyrin ring structure, were shown to bind viral receptor ACE2 and interfere with the interaction between ACE2 and the receptor-binding domain of viral S protein. Our study suggests that PpIX and verteporfin are potent antiviral agents against SARS-CoV-2 infection and sheds new light on developing novel chemoprophylaxis and chemotherapy against SARS-CoV-2.

12.
Cell Discov ; 7(1): 71, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: covidwho-1364581

RESUMO

Massive production of efficacious SARS-CoV-2 vaccines is essential for controlling the ongoing COVID-19 pandemic. We report here the preclinical development of yeast-produced receptor-binding domain (RBD)-based recombinant protein SARS-CoV-2 vaccines. We found that monomeric RBD of SARS-CoV-2 could be efficiently produced as a secreted protein from transformed Pichia pastoris (P. pastoris) yeast. Yeast-derived RBD-monomer possessed functional conformation and was able to elicit protective level of neutralizing antibodies in mice. We further designed and expressed a genetically linked dimeric RBD protein in yeast. The engineered dimeric RBD was more potent than the monomeric RBD in inducing long-lasting neutralizing antibodies. Mice immunized with either monomeric RBD or dimeric RBD were effectively protected from live SARS-CoV-2 virus challenge even at 18 weeks after the last vaccine dose. Importantly, we found that the antisera raised against the RBD of a single SARS-CoV-2 prototype strain could effectively neutralize the two predominant circulating variants B.1.1.7 and B.1.351, implying broad-spectrum protective potential of the RBD-based vaccines. Our data demonstrate that yeast-derived RBD-based recombinant SARS-CoV-2 vaccines are feasible and efficacious, opening up a new avenue for rapid and cost-effective production of SARS-CoV-2 vaccines to achieve global immunization.

13.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artigo em Inglês | MEDLINE | ID: covidwho-1117490

RESUMO

The pandemic of COVID-19, caused by SARS-CoV-2, is a major global health threat. Epidemiological studies suggest that bats (Rhinolophus affinis) are the natural zoonotic reservoir for SARS-CoV-2. However, the host range of SARS-CoV-2 and intermediate hosts that facilitate its transmission to humans remain unknown. The interaction of coronavirus with its host receptor is a key genetic determinant of host range and cross-species transmission. SARS-CoV-2 uses angiotensin-converting enzyme 2 (ACE2) as the receptor to enter host cells in a species-dependent manner. In this study, we characterized the ability of ACE2 from diverse species to support viral entry. By analyzing the conservation of five residues in two virus-binding hotspots of ACE2 (hotspot 31Lys and hotspot 353Lys), we predicted 80 ACE2 proteins from mammals that could potentially mediate SARS-CoV-2 entry. We chose 48 ACE2 orthologs among them for functional analysis, and showed that 44 of these orthologs-including domestic animals, pets, livestock, and animals commonly found in zoos and aquaria-could bind the SARS-CoV-2 spike protein and support viral entry. In contrast, New World monkey ACE2 orthologs could not bind the SARS-CoV-2 spike protein and support viral entry. We further identified the genetic determinant of New World monkey ACE2 that restricts viral entry using genetic and functional analyses. These findings highlight a potentially broad host tropism of SARS-CoV-2 and suggest that SARS-CoV-2 might be distributed much more widely than previously recognized, underscoring the necessity to monitor susceptible hosts to prevent future outbreaks.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , COVID-19/veterinária , Receptores Virais/genética , SARS-CoV-2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/genética , COVID-19/metabolismo , COVID-19/virologia , Especificidade de Hospedeiro , Humanos , Pandemias/prevenção & controle , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Filogenia , Ligação Proteica , Receptores Virais/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Tropismo Viral , Zoonoses Virais/genética , Zoonoses Virais/prevenção & controle , Zoonoses Virais/virologia , Ligação Viral , Internalização do Vírus
14.
Nat Commun ; 12(1): 961, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: covidwho-1078585

RESUMO

The global spread of SARS-CoV-2 is posing major public health challenges. One feature of SARS-CoV-2 spike protein is the insertion of multi-basic residues at the S1/S2 subunit cleavage site. Here, we find that the virus with intact spike (Sfull) preferentially enters cells via fusion at the plasma membrane, whereas a clone (Sdel) with deletion disrupting the multi-basic S1/S2 site utilizes an endosomal entry pathway. Using Sdel as model, we perform a genome-wide CRISPR screen and identify several endosomal entry-specific regulators. Experimental validation of hits from the CRISPR screen shows that host factors regulating the surface expression of angiotensin-converting enzyme 2 (ACE2) affect entry of Sfull virus. Animal-to-animal transmission with the Sdel virus is reduced compared to Sfull in the hamster model. These findings highlight the critical role of the S1/S2 boundary of SARS-CoV-2 spike protein in modulating virus entry and transmission and provide insights into entry of coronaviruses.


Assuntos
COVID-19/virologia , Sistemas CRISPR-Cas , Estudo de Associação Genômica Ampla , Interações Hospedeiro-Patógeno , SARS-CoV-2/fisiologia , Internalização do Vírus , Células A549 , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/genética , Chlorocebus aethiops , Modelos Animais de Doenças , Endossomos/virologia , Células HeLa , Humanos , Mesocricetus , Serina Endopeptidases , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Vero
15.
Nat Commun ; 12(1): 264, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: covidwho-1019816

RESUMO

The ongoing pandemic of coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Neutralizing antibodies against SARS-CoV-2 are an option for drug development for treating COVID-19. Here, we report the identification and characterization of two groups of mouse neutralizing monoclonal antibodies (MAbs) targeting the receptor-binding domain (RBD) on the SARS-CoV-2 spike (S) protein. MAbs 2H2 and 3C1, representing the two antibody groups, respectively, bind distinct epitopes and are compatible in formulating a noncompeting antibody cocktail. A humanized version of the 2H2/3C1 cocktail is found to potently neutralize authentic SARS-CoV-2 infection in vitro with half inhibitory concentration (IC50) of 12 ng/mL and effectively treat SARS-CoV-2-infected mice even when administered at as late as 24 h post-infection. We determine an ensemble of cryo-EM structures of 2H2 or 3C1 Fab in complex with the S trimer up to 3.8 Å resolution, revealing the conformational space of the antigen-antibody complexes and MAb-triggered stepwise allosteric rearrangements of the S trimer, delineating a previously uncharacterized dynamic process of coordinated binding of neutralizing antibodies to the trimeric S protein. Our findings provide important information for the development of MAb-based drugs for preventing and treating SARS-CoV-2 infections.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Monoclonais/farmacologia , Anticorpos Antivirais/química , Anticorpos Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , SARS-CoV-2/efeitos dos fármacos , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/uso terapêutico , Microscopia Crioeletrônica , Mapeamento de Epitopos , Epitopos , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Ligação Proteica/efeitos dos fármacos , Conformação Proteica , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA